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In this paper, we combine Carrera’s Unified Formulation and a radial basis function

collocation technique for predicting the static deformations and free vibration behavior

of thin and thick isotropic and cross-ply laminated plates. Through numerical

experiments, the capability and efficiency of this collocation technique for static and

thoughtfully examined.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The Unified Formulation (UF) proposed by Carrera [1–5] is a powerful framework for the analysis of beams, plates and
shells. This formulation has been applied in several finite element analysis, either using the Principle of Virtual
Displacements or by using Reissner’s Mixed Variational theorem. The stiffness matrix components, the external force terms
or the inertia terms can be obtained directly with this UF, irrespective of the shear deformation theory being considered.

In this paper, for the first time, we propose to use this UF to derive the equations of motion and boundary conditions to
analyze isotropic and cross-ply laminated plates by radial basis functions (RBF) collocation. We consider as examples two
shear deformation theories for which the UF generates the discretized set of collocation equations with the same basic approach

and coding. We consider here a first-order shear deformation theory (FSDT), disregarding the normal transverse stress sz,
and the higher-order theory (HSDT) of Kant [6,7] considering non-zero normal shear deformation ez.

The combination of the UF and collocation with RBFs provides an easy, highly accurate framework for the solution for
plates, under any kind of shear deformation theory, irrespective of the geometry, loads or boundary conditions. In this
sense, this can be considered a generalized RBF formulation.

The analysis of thin and moderately thick plates has been modeled by thin-plate theories, or by shear deformation
theories. Typically, such theories involve a constant transverse displacement across the thickness direction, making the
transverse normal strain and stress negligible. This assumption is adequate for thin-plates or plates for which
the thickness-to-ratio h/a is smaller than 0.1. For higher h/a ratios, the use of shear deformation theories considering the
contribution of the transverse normal strain and stress is fundamental. Among such theories, the pioneering higher-order
plate theory of Lo et al. [8,9] is attractive due to its simplicity and implementation in a computer code. The higher-order
transverse and normal plate theory of Kant and colleagues [6,7] consider not only a cubic evolution of the in-plane
displacements with the thickness direction (z), but also a parabolic evolution of the transverse displacement with z.
ll rights reserved.
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The theory was successfully implemented by finite elements or analytical solutions [6,7,10]. Recently the work of Batra
[11] and Carrera [1–3] show interesting ways of computing transverse and normal stresses in laminated composite or
sandwich plates. Higher-order theories in the thickness direction were also addressed by Librescu et al. [12], Reddy [13]
and more recently by Fiedler and colleagues [14] who considered polynomial expansions in the thickness direction. None
of such approaches considered the modeling by radial basis functions.

Recently, radial basis functions (RBFs) have enjoyed considerable success and research as a technique for interpolating
data and functions. A radial basis function, fðJx�xjJÞ is a spline that depends on the Euclidian distance between distinct
data centers xj, j¼ 1,2, . . . ,N 2 Rn, also called nodal or collocation points. Although most work to date on RBFs relates to
scattered data approximation and in general to interpolation theory, there has recently been an increased interest in their
use for solving partial differential equations (PDEs). This approach, which approximates the whole solution of the PDE
directly using RBFs, is truly a mesh-free technique. Kansa [15] introduced the concept of solving PDEs by an unsymmetric
RBF collocation method based upon the MQ interpolation functions, in which the shape parameter may vary across the
problem domain.

The analysis of plates by finite element methods is now fully established. The use of alternative methods such as the
meshless methods based on radial basis functions is attractive due to the absence of a mesh and the ease of collocation
methods. The use of radial basis function for the analysis of structures and materials has been previously studied by
numerous authors [16–27]. An interesting alternative to the present work was proposed by Xiang et al. [28,29], who
employed thin-plate splines to compute free vibrations of laminated plates, to extract the natural frequencies. An
interesting new meshless technique (ES-FEM) was recently proposed by Liu and colleagues [30–35]. The technique is based
on weak-form formulations, unlike the present paper which is based on strong-forms (RBF collocation). This method seems
to be very precise, and free from locking and spurious behavior. Another possible advantage of the ES-FEM is that it needs
the imposition of essential boundary conditions only, while the present collocation method needs both essential and
natural boundary conditions.

The authors have recently applied the RBF collocation to the static deformations of composite beams and plates [36–38].
In this paper it is investigated for the first time how the Unified Formulation can be combined with radial basis

functions to the analysis of thick isotropic and cross-ply laminated plates, using a first-order shear deformation theory
and a refined higher-order shear and normal deformation theory. The quality of the present method in predicting static
deformations, and free vibrations of thick isotropic and cross-ply laminated plates is compared and discussed with other
methods in some numerical examples.
2. Review of the Unified Formulation

In this section Carrera’s Unified Formulation [1–5] is briefly reviewed. It is shown how to obtain the fundamental nuclei,
which allows the derivation of the equations of motion and boundary conditions, in weak form for the finite element
analysis; and in strong form for the present RBF collocation.
2.1. Governing equations and boundary conditions in the framework of Unified Formulation

Although one can use the UF for one-layer, isotropic plate, a multi-layered plate with Nl layers is considered. The
Principle of Virtual Displacements (PVD) for the pure-mechanical case reads as

XNl

k ¼ 1

Z
Ok

Z
Ak

fdek
pGTrk

pCþde
k
nGTrk

nCgdOk dz¼
XNl

k ¼ 1

dLk
e , (1)

where Ok and Ak are the integration domains in plane (x,y) and z direction, respectively. Here, k indicates the layer and T

the transpose of a vector, and dLk
e is the external work for the kth layer. G means geometrical relations and C constitutive

equations.
The steps to obtain the governing equations are:
�
 Substitution of the geometrical relations (subscript G).

�
 Substitution of the appropriate constitutive equations (subscript C).

�
 Introduction of the Unified Formulation.
Stresses and strains are separated into in-plane and normal components, denoted, respectively, by the subscripts p and
n. The mechanical strains in the kth layer can be related to the displacement field uk ¼ fuk

x ,uk
y,uk

zg via the geometrical
relations:

ek
pG ¼ ½exx,eyy,gxy�

kT ¼Dk
puk,

ek
nG ¼ ½gxz,gyz,ezz�

kT ¼ ðDk
npþDk

nzÞu
k, (2)



A.J.M. Ferreira et al. / Journal of Sound and Vibration 330 (2011) 771–787 773
wherein the differential operator arrays are defined as follows:

Dk
p ¼

qx 0 0

0 qy 0

qy qx 0

2
64

3
75, Dk

np ¼

0 0 qx

0 0 qy

0 0 0

2
64

3
75, Dk

nz ¼

qz 0 0

0 qz 0

0 0 qz

2
64

3
75, (3)

The 3D constitutive equations are given as

rk
pC ¼ Ck

ppe
k
pGþCk

pne
k
nG,

rk
nC ¼ Ck

npe
k
pGþCk

nne
k
nG (4)

with

Ck
pp ¼

C11 C12 C16

C12 C22 C26

C16 C26 C66

2
64

3
75, Ck

pn ¼

0 0 C13

0 0 C23

0 0 C36

2
64

3
75,

Ck
np ¼

0 0 0

0 0 0

C13 C23 C36

2
64

3
75, Ck

nn ¼

C55 C45 0

C45 C44 0

0 0 C33

2
64

3
75: (5)

According to the Unified Formulation by Carrera, the three displacement components ux, uy and uz and their relative
variations can be modeled as

ðux,uy,uzÞ ¼ Ftðuxt,uyt,uztÞ, ðdux,duy,duzÞ ¼ Fsðduxs,duys,duzsÞ (6)

with Taylor expansions from first up to fourth-order: F0=z0=1, F1=z1=z,y,FN=zN,y,F4=z4 if an equivalent single layer
(ESL) approach is used.

In case of layerwise (LW) models, each layer k of the given multi-layered structure is separately considered:

ðuk
x ,uk

y,uk
z Þ ¼ Fk

t ðu
k
xt,uk

yt,uk
ztÞ, ðduk

x ,duk
y,duk

z Þ ¼ Fk
s ðduk

xs,duk
ys,duk

zsÞ, (7)

where combinations of Legendre polynomials are employed as thickness functions:

Ft ¼
P0þP1

2
, Fb ¼

P0�P1

2
, Fl ¼ Pl�Pl�2

with

t,s¼ t,b,l and l¼ 2, . . . ,14: (8)

Here, t and b indicate the top and bottom values for each layer, Pl are the Legendre polynomials (P0=1, P1 ¼ zk,
P2 ¼ ð3z

2
k�1Þ=2 and so on) with zk ¼ 2zk=hk that is the non-dimensionalized thickness coordinate ranging from �1 to +1 in

each layer k. zk is the local coordinate and hk is the thickness of the kth layer.
The chosen functions have the following interesting properties:

zk ¼ þ1 : Ft ¼ 1, Fb ¼ 0, Fl ¼ 0 at the top,

zk ¼�1 : Ft ¼ 0, Fb ¼ 1, Fl ¼ 0 at the bottom: (9)

It is obvious that for a single layer shell the ESL and LW evaluations coincide. In Figs. 1 and 2 are shown the assembling
procedures on layer k for ESL and LW approaches, respectively.

Substituting the geometrical relations, the constitutive equations and the Unified Formulation into the variational
statement PVD for the kth layer, one hasZ

Ok

Z
Ak

½ðDk
pFsduk

s Þ
T
ðCk

ppDk
pFtuk

tþCk
pnðD

k
nOþDk

nzÞFtuk
tÞ

þððDk
nOþDk

nzÞFsduk
s Þ

T
ðCk

npDk
pFtuk

tþCk
nnðD

k
nOþDk

nzÞFtuk
tÞ�dOk dz¼ dLk

e : (10)

At this point, the formula of integration by parts is applied:Z
Ok

ððDOÞdakÞ
Tak dOk ¼�

Z
Ok

dakT
ððDT

OÞa
kÞdOkþ

Z
Gk

dakT
ððIOÞa

kÞdGk, (11)

where IO matrix is obtained applying the Gradient theorem:Z
O

qc
qxi

du¼
I
G

nicds, (12)

ni being the components of the normal n̂ to the boundary along the direction i.



Fig. 1. Assembling procedure for ESL approach.

Fig. 2. Assembling procedure for LW approach.
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After integration by parts, the governing equations and boundary conditions for the plate in the mechanical case are
obtained:

Z
Ok

Z
Ak

ðduk
s Þ

T
½ðð�Dk

pÞ
T
ðCk

ppðD
k
pÞþCk

pnðD
k
nOþDk

nzÞ

þð�Dk
nOþDk

nzÞ
T
ðCk

npðD
k
pÞþCk

nnðD
k
nOþDk

nzÞÞÞFtFsu
k
t�dx dy dz

þ

Z
Ok

Z
Ak

ðduk
s Þ

T
½ðIkT

p ðC
k
ppðD

k
pÞþCk

pnðD
k
nOþDk

nzÞÞ

þIkT
npðC

k
npðD

k
pÞþCk

nnðD
k
nOþDk

nzÞÞÞFtFsu
k
t�dx dy dz¼

Z
Ok

dukT
s Fsp

k
u dOk, (13)

where Ip
k and Inp

k depend on the boundary geometry:

Ik
p ¼

nx 0 0

0 ny 0

ny nx 0

2
64

3
75, Ik

np ¼

0 0 nx

0 0 ny

0 0 0

2
64

3
75: (14)
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The normal to the boundary of domain O is

n̂ ¼
nx

ny

" #
¼

cosðjxÞ

cosðjyÞ

" #
, (15)

where jx and jy are the angles between the normal n̂ and the directions x and y, respectively.
The governing equations for a multi-layered plate subjected to mechanical loadings are

duk
s T : Kkts

uu uk
t ¼ Pk

ut, (16)

where the fundamental nucleus Kkts
uu is obtained as

Kkts
uu ¼ ½ð�Dk

pÞ
T
ðCk

ppðD
k
pÞþCk

pnðD
k
nOþDk

nzÞþð�Dk
nOþDk

nzÞ
T
ðCk

npðD
k
pÞþCk

nnðD
k
nOþDk

nzÞÞ�FtFs (17)

and the corresponding Neumann-type boundary conditions on Gk are

Pkts
d uk

t ¼Pkts
d uk

t, (18)

where

Pkts
d ¼ ½I

kT
p ðC

k
ppðD

k
pÞþCk

pnðD
k
nOþDk

nzÞÞþIkT
npðC

k
npðD

k
pÞþCk

nnðD
k
nOþDk

nzÞÞ�FtFs (19)

and Pk
ut are variationally consistent loads with applied pressure.

2.2. Fundamental nuclei

The fundamental nuclei in explicit form are then obtained as

Kkts
uu11
¼ ð�qtxq

s
xC11�q

t
xq

s
yC16þq

t
zq

s
zC55�q

t
yq

s
xC16�q

t
yq

s
yC66ÞFtFs,

Kkts
uu12
¼ ð�qtxq

s
yC12�q

t
xq

s
xC16þq

t
zq

s
zC45�q

t
yq

s
yC26�q

t
yq

s
xC66ÞFtFs,

Kkts
uu13
¼ ð�qtxq

s
zC13�q

t
yq

s
zC36þq

t
zq

s
yC45þq

t
zq

s
xC55ÞFtFs,

Kkts
uu21
¼ ð�qtyq

s
xC12�q

t
yq

s
yC26þq

t
zq

s
zC45�q

t
xq

s
xC16�q

t
xq

s
yC66ÞFtFs,

Kkts
uu22
¼ ð�qtyq

s
yC22�q

t
yq

s
xC26þq

t
zq

s
zC44�q

t
xq

s
yC26�q

t
xq

s
xC66ÞFtFs,

Kkts
uu23
¼ ð�qtyq

s
zC23�q

t
xq

s
zC36þq

t
zq

s
yC44þq

t
zq

s
xC45ÞFtFs,

Kkts
uu31
¼ ðqtzq

s
xC13þq

t
zq

s
yC36�q

t
yq

s
zC45�q

t
xq

s
zC55ÞFtFs,

Kkts
uu32
¼ ðqtzq

s
yC23þq

t
zq

s
xC36�q

t
yq

s
zC44�q

t
xq

s
zC45ÞFtFs,

Kkts
uu33
¼ ðqtzq

s
zC33�q

t
yq

s
yC44�q

t
yq

s
xC45�q

t
xq

s
yC45�q

t
xq

s
xC55ÞFtFs, (20)

Pkts
11 ¼ ðnxq

s
xC11þnxq

s
yC16þnyq

s
xC16þnyq

s
yC66ÞFtFs,

Pkts
12 ¼ ðnxq

s
yC12þnxq

s
xC16þnyq

s
yC26þnyq

s
xC66ÞFtFs,

Pkts
13 ¼ ðnxq

s
zC13þnyq

s
zC36ÞFtFs,

Pkts
21 ¼ ðnyq

s
xC12þnyq

s
yC26þnxq

s
xC16þnxq

s
yC66ÞFtFs,

Pkts
22 ¼ ðnyq

s
yC22þnyq

s
xC26þnxq

s
yC26þnxq

s
xC66ÞFtFs,

Pkts
23 ¼ ðnyq

s
zC23þnxq

s
zC36ÞFtFs,

Pkts
31 ¼ ðnyq

s
zC45þnxq

s
zC55ÞFtFs,

Pkts
32 ¼ ðnyq

s
zC44þnxq

s
zC45ÞFtFs,

Pkts
33 ¼ ðnyq

s
yC44þnyq

s
xC45þnxq

s
yC45þnxq

s
xC55ÞFtFs: (21)
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2.3. Dynamic governing equations

The PVD for the dynamic case is expressed as

XNl

k ¼ 1

Z
Ok

Z
Ak

fdek
pGTrk

pCþde
k
nGTrk

nCgdOk dz¼
XNl

k ¼ 1

Z
Ok

Z
Ak

rkdukT €uk
dOk dzþ

XNl

k ¼ 1

dLk
e , (22)

where rk is the mass density of the kth layer and double dots denote acceleration.
By substituting the geometrical relations, the constitutive equations and the Unified Formulation, we obtain the

following governing equations:

duk
s T : Kkts

uu uk
t ¼Mkts €uk

tþPk
ut: (23)

In the case of free vibrations one has

duk
s T : Kkts

uu uk
t ¼Mkts €uk

t, (24)

where Mkts is the fundamental nucleus for the inertial term. The explicit form of that is

Mkts
11 ¼ r

kFtFs,

Mkts
12 ¼ 0,

Mkts
13 ¼ 0,

Mkts
21 ¼ 0,

Mkts
22 ¼ r

kFtFs,

Mkts
23 ¼ 0,

Mkts
31 ¼Mkts

32 ¼Mkts
33 ¼ r

kFtFs: (25)

The geometrical and mechanical boundary conditions are the same as the static case.

3. Generation of shear deformation theories

By adequately choosing Ft, Fs, we can generate any type of C0 shear deformation theory. For example, the FSDT involves
the following expansion of displacements:

u¼ u0þzu1, v¼ v0þzv1, w¼w0þzw1: (26)

In a typical FSDT, we usually disregard w1. All we need is to specify Ft=[1 z], and proceed with the adequate
integrations in the thickness direction. Note that in this particular theory we use a reduced form of the 3D constitutive
stress–strain relations, given that sz ¼ 0.

The third-order shear deformation (see Kant [6]) assumes the following displacement field for isotropic or symmetric
cross-ply laminated plates:

u¼ zu1þz3u3, v¼ zv1þz3v3, w¼w0þz2w2: (27)

To generate the equations of motion, boundary conditions, and so on, we choose Ft=[z z3] for displacements u,v, and
Ft=[1 z2] for displacement w. We then obtain all terms of the equations of motion by integrating through the thickness
direction. For example, the first term of the first equation in (20) becomes

�qt
xq

s
x

XNL

k ¼ 1

Z zkþ 1

zk

cðkÞ11 dz

 !
, (28)

where c11
(k) is the 11-term of the matrix defined in (5) for layer k, and NL is the number of layers. The terms zk,zk +1 are the

global z-coordinate for each layer at its bottom and top surfaces, respectively. Therefore, for the FSDT formulation in the
first equation, the first term becomes A11q

2u0=qx2, A11 being obtained as

A11 ¼
XNL

k ¼ 1

Z zkþ 1

zk

cðkÞ11 dz: (29)

The other terms can be obtained in a similar way. It is interesting to note that under this combination of the Unified
Formulation and RBF collocation, the collocation code depends only on the choice of Ft, Fs, in order to solve this type of
problems. We designed a MATLAB code that just by changing Ft, Fs can analyze static deformations and free vibrations for
any type of C0 shear deformation theory. The equations of motion for the higher-order theory are presented in Appendix.
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4. The radial basis function method

4.1. The static problem

Radial basis functions (RBF) approximations are mesh-free numerical schemes that can exploit accurate representations
of the boundary, are easy to implement and can be spectrally accurate. In this section the formulation of a global
unsymmetrical collocation RBF-based method to compute elliptic operators is presented.

Consider a linear elliptic partial differential operator L and a bounded region O in Rn with some boundary qO. In the
static problems we seek the computation of displacements (u) from the global system of equations

Lu¼ f in O, (30)

LBu¼ g on qO, (31)

where L, LB are linear operators in the domain and on the boundary, respectively. The right-hand side of (30) and (31)
represents the external forces applied on the plate and the boundary conditions applied along the perimeter of the plate,
respectively. The PDE problem defined in (30) and (31) will be replaced by a finite problem, defined by an algebraic system
of equations, after the radial basis expansions.

4.2. The eigenproblem

The eigenproblem looks for eigenvalues (l) and eigenvectors (u) that satisfy

Luþlu¼ 0 in O, (32)

LBu¼ 0 on qO: (33)

As in the static problem, the eigenproblem defined in (32) and (33) is replaced by a finite-dimensional eigenvalue
problem, based on RBF approximations.

4.3. Radial basis function approximations

The radial basis function ðfÞ approximation of a function (u) is given by

~uðxÞ ¼
XN

i ¼ 1

aifðJx�yiJ2Þ, x 2 Rn, (34)

where yi, i=1,y,N is a finite set of distinct points (centers) in Rn. The most common RBFs are

Cubic : fðrÞ ¼ r3,

Thin plate splines : fðrÞ ¼ r2logðrÞ,

Wendland functions : fðrÞ ¼ ð1�rÞmþpðrÞ,

Gaussian : fðrÞ ¼ e�ðcrÞ2 ,

Multiquadrics : fðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2þr2

p
,

Inverse Multiquadrics : fðrÞ ¼ ðc2þr2Þ
�1=2,

where the Euclidian distance r is real and non-negative and c is a positive shape parameter. Hardy [39] introduced
multiquadrics in the analysis of scattered geographical data. In the 1990s Kansa [15] used multiquadrics for the solution of
partial differential equations. Considering N distinct interpolations, and knowing u(xj), j=1,2,y,N, we find ai by the
solution of an N�N linear system

Aa ¼ u, (35)

where A¼ ½fðJx�yiJ2Þ�N�N , a ¼ ½a1,a2, . . . ,aN�
T and u=[u(x1),u(x2),y,u(xN)]T.

4.4. Solution of the static problem

The solution of a static problem by radial basis functions considers NI nodes in the domain and NB nodes on the
boundary, with a total number of nodes N=NI+NB. We denote the sampling points by xi 2 O, i=1,y,NI and xi 2 qO,
i=NI+1,y,N. At the points in the domain we solve the following system of equations:

XN

i ¼ 1

aiLfðJx�yiJ2Þ ¼ fðxjÞ, j¼ 1,2, . . . ,NI (36)
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or

LIa ¼ F, (37)

where

LI ¼ ½LfðJx�yiJ2Þ�NI�N : (38)

At the points on the boundary, we impose boundary conditions as

XN

i ¼ 1

aiLBfðJx�yiJ2Þ ¼ gðxjÞ, j¼NIþ1, . . . ,N (39)

or

Ba ¼ G: (40)

Therefore, we can write a finite-dimensional static problem as

LI

B

" #
a ¼

F

G

� �
: (41)

By inverting the system (41), we obtain the vector a. We then obtain the solution u using the interpolation equation
(34). To keep the collocation matrix as a square matrix, we have used the same number of points and centers.

4.5. Solution of the eigenproblem

We consider NI nodes in the interior of the domain and NB nodes on the boundary, with N=NI+NB. We denote
interpolation points by xi 2 O, i=1,y,NI and xi 2 qO, i=NI+1,y,N. At the points in the domain, we define the eigenproblem as

XN

i ¼ 1

aiLfðJx�yiJ2Þ ¼ l ~uðxjÞ, j¼ 1,2, . . . ,NI (42)

or

LIa ¼ l ~uI , (43)

where

LI ¼ ½LfðJx�yiJ2Þ�NI�N : (44)

At the points on the boundary, we enforce the boundary conditions as

XN

i ¼ 1

aiLBfðJx�yiJ2Þ ¼ 0, j¼NIþ1, . . . ,N (45)

or

Ba ¼ 0: (46)

We can then write a finite-dimensional problem as a generalized eigenvalue problem

LI

B

" #
a ¼ l

AI

0

" #
a, (47)

where

AI
¼f½ðJxNI

�yjJ2Þ�NI�N , B¼ LBf½ðJxNI þ1�yjJ2Þ�NB�N :

5. Discretization of the equations of motion and boundary conditions

The radial basis collocation method follows a simple implementation procedure. Taking Eq. (13), we compute

a¼
LI

B

" #�1
F

G

� �
: (48)

This a vector is then used to obtain solution ~u, using (7). If derivatives of ~u are needed, such derivatives are computed as

q ~u
qx
¼
XN

j ¼ 1

aj

qfj

qx
, (49)
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q2 ~u

qx2
¼
XN

j ¼ 1

aj

q2fj

qx2
, etc: (50)

In the present collocation approach, we need to impose essential and natural boundary conditions. Consider, for
example, the condition w=0, on a simply supported or clamped edge. We enforce the conditions by interpolating as

w¼ 0-
XN

j ¼ 1

aW
j fj ¼ 0: (51)

Other boundary conditions are interpolated in a similar way.
For free vibration problems we set the external force to zero, and assume harmonic solution in terms of displacements

u0,u1,v0,v1,y. If we consider the present HSDT, then we express

u1 � yxðx,y,tÞ ¼Cxðw,yÞeiot , (52)

u3 � y�xðx,y,tÞ ¼C�xðw,yÞeiot , (53)

v1 � yyðx,y,tÞ ¼Cyðw,yÞeiot , (54)

v3 � y�yðx,y,tÞ ¼C�yðw,yÞeiot , (55)

w0 �wðx,y,tÞ ¼Wðw,yÞeiot , (56)

w2 �w�ðx,y,tÞ ¼W�ðw,yÞeiot , (57)

where o is the frequency of natural vibration. Substituting the harmonic expansion into Eq. (47) in terms of the amplitudes
W ,Cx,Cy,W�,C�x ,C�y, we may obtain the natural frequencies and vibration modes for the plate problem.

6. Numerical examples

In all the following examples a Chebyshev grid was used. The Wendland function used in all examples is defined as

fðrÞ ¼ ð1�c rÞ8þ ð32ðc rÞ3þ25ðc rÞ2þ8c rþ1Þ, (58)

where the shape parameter (c) is obtained by an optimal procedure, as in Ferreira and Fasshauer [40].

6.1. Static problems—isotropic plates

The first example considers the deflections of simply supported and clamped, uniformly loaded square plate (a/b=1,
n¼ 0:3). We consider thin (h/a=100) and thick (h/a=0.5) plates, using 13�13, 17�17, 21�21, and 25�25 points.

Tables 1 and 2 compare the present results with the Mindlin (FSDT) theory [41] and the analytical higher-order (HSDT)
solution by Kant et al. [6,7]. Note that D is the flexural stiffness (D¼ Eh3=ð12ð1�n2Þ). The FSDT deviates from the present
approach for thicker plates. The results show that the present FSDT and HSDT solution presents good convergence
characteristics. The present HSDT numerical technique reproduces almost exactly the analytical solution by Kant, for z=0.
Table 1

Convergence study for deflections ð�pa4=DÞ for uniformly loaded square SSSS plate (n¼ 0:3).

h/a Source 13�13 points 17�17 21�21 25�25

0.01 Present FSDT 0.003968 0.004054 0.004061 0.004064

Present HSDT 0.003950 0.004052 0.004061 0.004063

Mindlin [41] 0.00406

0.1 Present FSDT 0.004270 0.004273 0.004273 0.004272

Present HSDT 0.004245 0.004249 0.004250 0.004249

Mindlin [41] 0.00427

0.2 Present FSDT 0.004902 0.004904 0.004904 0.004904

Present HSDT 0.004806 0.004805 0.004805 0.004804

Mindlin [41] 0.00490

0.5 Present FSDT 0.009322 0.009324 0.009325 0.009324

Present HSDT 0.008521 0.008523 0.008522 0.008522

Kant [6,7] 0.00853

The classical plate solution is 0.00406.



Table 2

Convergence study for deflections ð�pa4=DÞ for uniformly loaded square CCCC plate (n¼ 0:3).

h/a Source 13�13 points 17�17 21�21 25�25

0.01 Present FSDT 0.001127 0.001267 0.001275 0.001266

Present HSDT 0.001118 0.001261 0.001268 0.001266

Mindlin [41] 0.00126

0.1 Present FSDT 0.001503 0.001505 0.001504 0.001504

Present HSDT 0.001482 0.001487 0.001488 0.001486

(at z=h/2) 0.001501 0.001508 0.001508 0.001506

Kant [6,7] 0.00156

0.2 Present FSDT 0.002171 0.002172 0.002172 0.002172

Present HSDT 0.002111 0.002118 0.002119 0.002119

(at z=h/2) 0.002178 0.002187 0.002184 0.002186

Kant [6,7] 0.00211

0.5 Present FSDT 0.006631 0.006632 0.006632 0.006632

First higher-order theory 0.006083 0.006089 0.006089 0.006088

(at z=h/2) 0.006741 0.006767 0.006764 0.006764

Kant [6,7] 0.00609

The classical plate solution is 0.00126.

Table 3
Natural frequencies of a CCCC square Mindlin/Reissner plate with h/a=0.1, n¼ 0:3.

Mode no. 13� 13 17�17 21�21 Rayleigh–Ritz [42] Liew et al. [43]

Present FSDT

1 1.5871 1.5870 1.5870 1.5940 1.5582

2 3.0275 3.0272 3.0270 3.0390 3.0182

3 3.0275 3.0272 3.0272 3.0390 3.0182

4 4.2441 4.2427 4.2433 4.2650 4.1711

Present HSDT

1 1.5944 1.5944 1.5946 1.5940 1.5582

2 3.0385 3.0373 3.0376 3.0390 3.0182

3 3.0385 3.0373 3.0377 3.0390 3.0182

4 4.2559 4.2518 4.2528 4.2650 4.1711
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Interesting to note the difference of the transverse displacement for z=0 (middle surface) and for z=h/2 (top surface). This
effect will surely be more pronounced for sandwich structures. As observed in Table 2, there is a slight oscillation in the
normalized transverse displacement. It seems to happen only in the FSDT case. One possible reason for this quite small
oscillation is the fact that, for each grid considered, the optimal shape parameter is also slightly different, which may affect
the results.

6.2. Free vibration problems—isotropic plates

Natural frequencies and vibration modes are presented for square simply supported and clamped isotropic plates (a/b=1).
The non-dimensional frequency parameters are given as

o ¼oa
ffiffiffiffiffiffiffiffiffi
r=G

p
, (59)

where o is the frequency, a is the side length, r is the mass density per unit volume, G is the shear modulus and
G¼ E=ð2ð1þnÞÞ, E is Young’s modulus and n is Poisson’s ratio.

We compute results for an isotropic plate with different boundary conditions. Firstly, two fully clamped (CCCC)
Mindlin/Reissner square plates with different thickness-to-side ratios are considered. The plates are clamped at all
boundary edges. The first four modes of vibration for both plates are calculated. Two cases of thickness-to-side ratios
h/a=0.01 and 0.1 are considered. The comparison of frequency parameters with the Rayleigh–Ritz solutions [42] and
results by Liew et al. [43], using a reproducing kernel particle approximation, for each plate is listed in Tables 3 and 4.
Excellent agreement is obtained even for a small number of nodes. Our solution is closer to Rayleigh–Ritz solutions than
that of Liew. Figs. 3 and 4 present the first eight modal shapes of the CCCC plate (h/a=0.1), using a 17�17 nodal grid.

Secondly, fully simply supported (SSSS) Mindlin/Reissner square plates with different thickness-to-side ratios are
considered. The first four modes of vibration are computed for two cases of thickness-to-side ratios h/a=0.01 and 0.1.
Results are compared with 3D-elasticity and Mindlin closed-form solutions [44], and results by Liew et al. [43]. Results are
listed in Tables 5 and 6 and show excellent agreement with closed-form solutions.



Table 4
Natural frequencies of a CCCC square Mindlin/Reissner plate with h/a=0.01, n¼ 0:3.

Mode no. 13�13 17�17 21�21 Rayleigh–Ritz [42] Liew et al. [43]

Present FSDT

1 0.1843 0.1753 0.1753 0.1754 0.1743

2 0.3786 0.3574 0.3572 0.3576 0.3576

3 0.3786 0.3575 0.3574 0.3576 0.3576

4 0.5636 0.5278 0.5273 0.5274 0.5240

Present HSDT

1 0.1787 0.1770 0.1756 0.1754 0.1743

2 0.3542 0.3630 0.3580 0.3576 0.3576

3 0.3542 0.3630 0.3583 0.3576 0.3576

4 0.5257 0.5373 0.5277 0.5274 0.5240
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Fig. 3. First four vibrational modes: CCCC, h/a=0.1, grid 17� 17.
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6.3. Static problems—cross-ply laminated plates

A simply supported square laminated plate of side a and thickness h is composed of four equally layers oriented
at [01/901/901/01]. The plate is subjected to a sinusoidal vertical pressure of the form

pz ¼ Psin
px

a

� �
sin

py

a

� �

with the origin of the coordinate system located at the lower left corner on the midplane and P the maximum load
(at center of plate).

The orthotropic material properties are given by

E1 ¼ 25:0E2, G12 ¼ G13 ¼ 0:5E2, G23 ¼ 0:2E2, n12 ¼ 0:25:
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Fig. 4. Fifth to eighth vibrational modes: CCCC, h/a=0.1, grid 17� 17.

Table 5
Natural frequencies of a SSSS square Mindlin/Reissner plate with h/a=0.1, n¼ 0:3 (*: closed-form solution).

Mode no. 13�13 17�17 21�21 3D* Mindlin [44] Liew et al. [43]

Present FSDT

1 0.9303 0.9303 0.9303 0.932 0.930 0.922

2 2.2195 2.2193 2.2193 2.226 2.219 2.205

3 2.2195 2.2193 2.2193 2.226 2.219 2.205

4 3.1416 3.1416 3.1416 3.421 3.406 3.377

Present HSDT

1 0.9286 0.9286 0.9286 0.932 0.930 0.922

2 2.2113 2.2111 2.2111 2.226 2.219 2.205

3 2.2113 2.2111 2.2111 2.226 2.219 2.205

4 3.3892 3.3886 3.3886 3.421 3.406 3.377
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The in-plane displacements, the transverse displacements, the normal stresses and the in-plane and transverse shear
stresses are presented in normalized form as

w ¼
102wða=2,a=2,0Þh

3E2

Pa4
, sxx ¼

sxxða=2,a=2,h=2Þh
2

Pa2
, syy ¼

syyða=2,a=2,h=4Þh
2

Pa2
,

txz ¼
txzð0,a=2,0Þh

Pa
, txy ¼

txyð0,0,h=2Þh
2

Pa2
:

In Table 7 we present results for the present FSDT, and in Table 8 for the present HSDT, using 11�11 up to 21�21
points. We compare results with higher-order solutions by Akhras [45], and Reddy [46], FSDT solutions by Reddy and Chao
[47], and an exact solution by Pagano [48]. We also compare the results with authors using RBFs with Reddy’s theory [38],
and a layerwise theory [49]. As expected both present FSDT and HSDT results are very good for thinner plates, while for



Table 6
Natural frequencies of a SSSS square Mindlin/Reissner plate with h/a=0.01, n¼ 0:3.

Mode no. 13�13 17�17 21�21 Mindlin [44] Liew et al. [43]

Present FSDT

1 0.0965 0.0963 0.0963 0.0963 0.0961

2 0.2417 0.2407 0.2405 0.2406 0.2419

3 0.2417 0.2407 0.2407 0.2406 0.2419

4 0.3883 0.3851 0.3848 0.3848 0.3860

Present HSDT

1 0.0965 0.0963 0.0963 0.0963 0.0961

2 0.2416 0.2407 0.2405 0.2406 0.2419

3 0.2416 0.2407 0.2406 0.2406 0.2419

4 0.3885 0.3851 0.3847 0.3848 0.3860

Table 7
[01/901/901/01] square laminated plate under sinusoidal load-FSDT formulation (ez ¼ 0).

a

h
Method w sxx syy tzx txy

4 HSDT Finite Strip method [45] 1.8939 0.6806 0.6463 0.2109 0.0450

HSDT [46] 1.8937 0.6651 0.6322 0.2064 0.0440

FSDT [47] 1.7100 0.4059 0.5765 0.1398 0.0308

Elasticity [48] 1.954 0.720 0.666 0.270 0.0467

Ferreira et al. [38] (N=21) 1.8864 0.6659 0.6313 0.1352 0.0433

Ferreira (layerwise) [49] (N=21) 1.9075 0.6432 0.6228 0.2166 0.0441

Present (11�11 grid) 1.7095 0.4057 0.5762 0.2576 0.0308

Present (13�13 grid) 1.7095 0.4059 0.5765 0.2675 0.0308

Present (17�17 grid) 1.7095 0.4059 0.5764 0.2777 0.0308

Present (21�21 grid) 1.7095 0.4059 0.5764 0.2825 0.0308

10 HSDT Finite Strip method [45] 0.7149 0.5589 0.3974 0.2697 0.0273

HSDT [46] 0.7147 0.5456 0.3888 0.2640 0.0268

FSDT [47] 0.6628 0.4989 0.3615 0.1667 0.0241

Elasticity [48] 0.743 0.559 0.403 0.301 0.0276

Ferreira et al. [38] (N=21) 0.7153 0.5466 0.4383 0.3347 0.0267

Ferreira (layerwise) [49] (N=21) 0.7309 0.5496 0.3956 0.2888 0.0273

Present (11�11 grid) 0.6626 0.4986 0.3614 0.3070 0.0241

Present (13�13 grid) 0.6627 0.4989 0.3614 0.3188 0.0241

Present (17�17 grid) 0.6627 0.4989 0.3614 0.3309 0.0241

Present (21�21 grid) 0.6627 0.4989 0.3614 0.3367 0.0241

100 HSDT Finite Strip method [45] 0.4343 0.5507 0.2769 0.2948 0.0217

HSDT [46] 0.4343 0.5387 0.2708 0.2897 0.0213

FSDT [47] 0.4337 0.5382 0.2705 0.1780 0.0213

Elasticity [48] 0.4347 0.539 0.271 0.339 0.0214

Ferreira et al. [38] (N=21) 0.4365 0.5413 0.3359 0.4106 0.0215

Ferreira (layerwise) [49] (N=21) 0.4374 0.5420 0.2697 0.3232 0.0216

Present (11�11 grid) 0.4325 0.5381 0.2687 0.3291 0.0212

Present (13�13 grid) 0.4335 0.5378 0.2710 0.3411 0.0213

Present (17�17 grid) 0.4337 0.5382 0.2705 0.3535 0.0213

Present (21�21 grid) 0.4337 0.5382 0.2705 0.3596 0.0213
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thicker plates, only the HSDT can accurately predict the deflections. Both methods produce highly accurate normal stresses
and transverse shear stresses.
6.4. Free vibration problems—cross-ply laminated plates

Unless otherwise stated, all layers of the laminate are assumed to be of the same thickness, density and made of the
same linearly elastic composite material. The following material parameters of a layer are used:

E1

E2
¼ 10,20,30 or 40, G12 ¼ G13 ¼ 0:6E2, G3 ¼ 0:5E2, n12 ¼ 0:25:

The subscripts 1 and 2 denote the directions normal and transverse to the fiber direction in a lamina, which may be
oriented at an angle to the plate axes. The ply angle of each layer is measured from the global x-axis to the fiber direction.
For the FSDT, we use a shear correction factor k¼ p2=12, as proposed in [50].



Table 8
[01/901/901/01] square laminated plate under sinusoidal load-HSDT formulation (eza0).

a

h
Method w sxx syy tzx txy

4 HSDT Finite Strip method [45] 1.8939 0.6806 0.6463 0.2109 0.0450

HSDT [46] 1.8937 0.6651 0.6322 0.2064 0.0440

FSDT [47] 1.7100 0.4059 0.5765 0.1398 0.0308

Elasticity [48] 1.954 0.720 0.666 0.270 0.0467

Ferreira et al. [38] (N=21) 1.8864 0.6659 0.6313 0.1352 0.0433

Ferreira (layerwise) [49] (N=21) 1.9075 0.6432 0.6228 0.2166 0.0441

Present (11�11 grid) 1.8843 0.7161 0.6328 0.1896 0.0462

Present (13�13 grid) 1.8843 0.7163 0.6331 0.1969 0.0462

Present (17�17 grid) 1.8844 0.7163 0.6330 0.2043 0.0462

Present (21�21 grid) 1.8844 0.7163 0.6330 0.2079 0.0462

10 HSDT Finite Strip method [45] 0.7149 0.5589 0.3974 0.2697 0.0273

HSDT [46] 0.7147 0.5456 0.3888 0.2640 0.0268

FSDT [47] 0.6628 0.4989 0.3615 0.1667 0.0241

Elasticity [48] 0.743 0.559 0.403 0.301 0.0276

Ferreira et al. [38] (N=21) 0.7153 0.5466 0.4383 0.3347 0.0267

Ferreira (layerwise) [49] (N=21) 0.7309 0.5496 0.3956 0.2888 0.0273

Present (11�11 grid) 0.7204 0.5606 0.3913 0.2513 0.0273

Present (13�13 grid) 0.7205 0.5607 0.3913 0.2610 0.0273

Present (17�17 grid) 0.7205 0.5607 0.3913 0.2709 0.0273

Present (21�21 grid) 0.7205 0.5607 0.3913 0.2756 0.0273

100 HSDT Finite Strip method [45] 0.4343 0.5507 0.2769 0.2948 0.0217

HSDT [46] 0.4343 0.5387 0.2708 0.2897 0.0213

FSDT [47] 0.4337 0.5382 0.2705 0.1780 0.0213

Elasticity [48] 0.4347 0.539 0.271 0.339 0.0214

Ferreira et al. [38] (N=21) 0.4365 0.5413 0.3359 0.4106 0.0215

Ferreira (layerwise) [49] (N=21) 0.4374 0.5420 0.2697 0.3232 0.0216

Present (11�11 grid) 0.4349 0.5380 0.2686 0.2777 0.0214

Present (13�13 grid) 0.4361 0.5382 0.2713 0.2886 0.0214

Present (17�17 grid) 0.4362 0.5385 0.2708 0.3001 0.0214

Present (21�21 grid) 0.4362 0.5385 0.2707 0.3054 0.0214

Table 9

The normalized fundamental frequency of the simply supported cross-ply laminated square plate [01/901/901/01] ðw ¼ ðwa2=hÞ
ffiffiffiffiffiffiffiffiffiffiffi
r=E2

p
,h=a¼ 0:2Þ.

Method Grid E1/E2

10 20 30 40

Liew [50] 8.2924 9.5613 10.320 10.849

Exact (Reddy, Khdeir) [51,52] 8.2982 9.5671 10.326 10.854

Present FSDT 13�13 8.2983 9.5672 10.3259 10.8541

17�17 8.2982 9.5671 10.3258 10.8540

21�21 8.2982 9.5671 10.3258 10.8540

Present HSDT (n23 ¼ 0:18) 13�13 8.3001 9.5413 10.2688 10.7653

17�17 8.2999 9.5411 10.2687 10.7652

21�21 8.2999 9.5411 10.2687 10.7652
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The example considered is a simply supported square plate of the cross-ply lamination [01/901/901/ 01]. The thickness
and length of the plate are denoted by h and a, respectively. The thickness-to-span ratio h/a=0.2 is employed in the
computation. Table 9 lists the fundamental frequency of the simply supported laminate made of various modulus ratios of
E1/E2. It is found that the results are in very close agreement with the values of [51,52] and the meshfree results of Liew
[50] based on the FSDT. The relative errors between the analytical and present solutions are around 0.2 percent when we
use a 13�13 grid for E1/E2=10 and 0.1 percent when we use a 13�13 grid for E1/E2=40.

7. Conclusions

In this paper we presented, for the first time, a study using the radial basis function collocation method to analyze static
deformations and free vibrations of thick plates using a first-order shear deformation theory; and a higher-order shear and
normal deformation theory of Kant, allowing for transverse normal deformations.

Using the Unified Formulation with the radial basis collocation, all the C0 plate formulations can be easily discretized by
radial basis functions collocation. This has not been done before and this paper serves to fill this gap of knowledge in this
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area. Also, the burden of deriving the equations of motion and boundary conditions is eliminated with the present
approach. All that is needed is to change one vector Ft that defines the expansion of displacements. The MATLAB code
automatically solves the static problem or the free vibration problem, irrespective of the shear deformation theory we use.
This represents an enormous flexibility and it can be extended easily to other related problems such as bending stress
calculations, flexural vibrations and buckling.

We analyzed square isotropic and cross-ply laminated plates in bending and free vibrations. The present results were
compared with existing analytical solutions or competitive finite element solutions and very good agreement was
observed in both cases.

The present method is a simple yet powerful alternative to other finite element or meshless methods in the static
deformation and free vibration analysis of thin and thick isotropic or laminated plates.
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Appendix A. Equations of motion—HSDT

The equations of motion for the current higher-order shear deformation theory for a cross-ply plate of constant r across
the thickness direction are presented next:

du1 :
XNL

k ¼ 1

Z zkþ 1

zk

�cðkÞ11z2 q
2u1

qx2
þcðkÞ55u1�cðkÞ66z2 q

2u1

qy2
�cðkÞ11z4 q

2u3

qx2
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2u3
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2v3
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qw0

qx
þcðkÞ55z2 qw0

qx
�cðkÞ132z2 qw2

qx
dz¼

rh3

12

q2u1

qt2
þ
rh5

80

q2u3

qt2
, (60)

du3 :
XNL

k ¼ 1
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2u1

qy2
�cðkÞ11z6 q

2u3

qx2
þ9z4cðkÞ55u3�cðkÞ66z6 q

2u3

qy2

�cðkÞ12z4 q
2v1

qxqy
�cðkÞ66z4 q

2v1

qxqy
�cðkÞ12z6 q

2v3

qxqy
�cðkÞ66z6 q

2v3

qxqy

þcðkÞ55

qw0

qx
3z2þcðkÞ553z4 qw0

qx
�cðkÞ132z4 qw2

qx
dz¼

rh5

80

q2u1

qt2
þ
rh7

448

q2u3

qt2
, (61)

dv1 :
XNL

k ¼ 1

Z zkþ 1

zk

�cðkÞ12z2 q
2u1

qxqy
�cðkÞ66z2 q

2u1

qxqy
�cðkÞ12z4 q

2u3

qxqy
�cðkÞ66z4 q

2u3

qxqy

�cðkÞ22z2 q
2v1

qy2
þc44v1�cðkÞ66z2 q

2v1

qx2
�cðkÞ22z4 q

2v3

qy2
þc44v33z2�cðkÞ66z4 q

2v3

qx2

þcðkÞ44

qw0

qy
þcðkÞ44z2 qw0

qy
�cðkÞ232z2 qw2

qy
dz¼

rh3

12

q2v1

qt2
þ
rh5

80

q2v3

qt2
, (62)

dv3 :
XNL

k ¼ 1

Z zkþ 1

zk

�cðkÞ12z4 q
2u1

qxqy
�cðkÞ66z4 q

2u1

qxqy
�cðkÞ12z6 q

2u3

qxqy
�cðkÞ66z6 q

2u3

qxqy

�cðkÞ22z4 q
2v1

qy2
þc44v13z2�cðkÞ66z4 q

2v1

qx2
�cðkÞ22z6 q

2v3

qy2
þc44v39z4�cðkÞ66z6 q

2v3

qx2

þcðkÞ44

qw0

qy
3z2þcðkÞ443z4 qw0

qy
�cðkÞ232z4 qw2

qy
dz¼

rh5

80

q2v1

qt2
þ
rh7

448

q2v3

qt2
, (63)

dw0 :
XNL

k ¼ 1

Z zkþ 1

zk

�cðkÞ55

qu1

qx
�cðkÞ55

qu3

qx
3z2�cðkÞ44

qv1

qy
�cðkÞ44

qv3

qy
3z2

�cðkÞ44

q2w0

qy2
�cðkÞ55

q2w0

qx2
�cðkÞ44

q2w2

qy2
z2�cðkÞ55

q2w0

qx2
z2dzþq¼ rh

q2w0

qt2
þ
rh3

12

q2w2

qt2
, (64)

dw2 :
XNL

k ¼ 1

Z zkþ 1

zk

�cðkÞ55

qu1

qx
z2�cðkÞ55

qu3

qx
3z4�cðkÞ44

qv1

qy
�cðkÞ44

qv3

qy
3z4
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�cðkÞ44

q2w0

qy2
z2�cðkÞ55

q2w0

qx2
z2�cðkÞ44

q2w2

qy2
z4�cðkÞ55

q2w0

qx2
z4þc33w24z2 dz

þcðkÞ132z2 qu1

qx
þcðkÞ132z4 qu3

qx
þcðkÞ232z2 qv1

qy
þcðkÞ232z4 qv3

qy
þqh2=4¼

rh3

12

q2w0

qt2
þ
rh5

80

q2w2

qt2
(65)

q being the external load.
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